Implementation Plan

Operations Manual to Reservoir Model

Implementation Step 1: Study the Operations Plan

- A. Extract from the operations plan the normal operations
 - not emergency or special flood control rules
- B. Write an outline of the rules of operation
 - Include dependencies of downstream control points
 - Include dependencies of other reservoirs
- C. Map this outline against the RFS reservoir models
- D. Determine the data you will need to model the reservoir

Implementation Step 1B Example: Normal Operations Outline

- Below 723.0 ft
 - Release to maintain elevation 723.0 ft for power generation
 - or meet low flow requirement of 250 cfs
- > 723.0 754.0 ft Rising AND forecast not to exceed 754.0 ft
 - 723.0 < Elev < 724.8, Release <=12,000 cfs
 - 724.8 < Elev < 733.2, Release <=60,000 cfs
 - 733.2, Elev < 754.0, Release <= 110,000 cfs
 - Downstream Tulsa gage < 110,000 cfs
 - Downstream Haskell gage < 130,600 cfs
 - Downstream VanBuren gage < 105,000 cfs

Implementation Step 1B Example: Normal Operations Outline

- > 754.0 ft 757.0 ft Rising OR forecast to exceed 754.0 ft
 - Begin raising gates to induce surcharge
- > ELEV >757.0 ft RISING
 - Flows over top of fully open gates
- > ELEV >757.0 ft FALLING
 - Evacuate induced surcharge with fully open gates
- > 754.0 ft 757.0 ft FALLING
 - Evacuate induced surcharge while closing gates
- > 754.0 ft- 723.0 ft FALLING
 - Evacuate flood storage to 723.0 ft

Implementation Step 1C Example: Map Outline to RFS Models

- Below 723.0 ft
 - Release to maintain elevation 723.0 ft for power generation
 - or meet low flow requirement of 250 cfs

> RES-SNGL

- Define daily power generation with POWERGEN with daily option
- Define Low Flow Requirement with SETQ scheme with constant release of 250 cfs
- Use POOL and QO keywords and SETMIN utility in RCL to select active scheme

RES-J

- Fake daily power generation with the SETRELEASE method with the diurnal variation option
- Define the low flow requirement with the SETRELEASE method
- Select the minimum release with the SETMIN method
- Execute this SETMIN in the RULES section to activate method.

5

Implementation Step 1C Example: Map Outline to RFS Models

- > 723.0 754.0 ft Rising AND forecast not to exceed 754.0 ft
 - 723.0 < Elev < 724.8, Release <=12,000 cfs
 - 724.8 < Elev < 733.2, Release <=60,000 cfs
 - 733.2, Elev < 754.0, Release <= 110,000 cfs
 - Downstream Tulsa gage < 110,000 cfs
 - Downstream Haskell gage < 130,600 cfs
 - Downstream VanBuren gage < 105,000 cfs

> RES-SNGL

- Use RISING keyword
- Define SUMINF Utility and FLOOD Keyword to check if forecast is to exceed 754.0 ft
- Define POOLQ scheme with constant discharge
- Define downstream control points (2 Maximum) with STPOOLQ
- Add local flow if not negligible
- Use POOL and RISING keywords and SETMIN utility to select active scheme

RES-J

- Use PREVIOUSPOOL and POOL keywords to determine if rising pool.
- Can not model forecast condition to exceed 754.0 ft
- Define SETRELEASE method with constant discharge between elevations
- Define downstream control points with MAXSTAGE method (only 2 allowed)
- Add local flow if not negligible
- Select minimum release with SETMIN method, execute this SETMIN method in the RULES section

Implementation Step 1C Example: Map Outline to RFS Models

- > 754.0 ft 757.0 ft Rising OR forecast to exceed 754.0 ft Begin raising gates to induce surcharge
- > RES-SNGL
 - Define INDSRCHGE Scheme
 - Use FLOOD keyword to determine if elevation is forecast to exceed 754.0 ft
 - Use POOL and RISING keyword and SETMIN utility to select active scheme
- > RES-J
 - Cannot model this condition

Implementation Step 1D Example: Determine the data you will need

- Reservoir operations manual with rules of operation
- Reservoir elevation-storage curve digitized
- Induced surcharge curve digitized
- Spillway rating curve partial and full gate open digitized
- > Historical data time series for ICP runs
 - Inflow time series
 - Outflow time series
 - Local inflow to downstream control points

Implementation Step 2: Collect Data Required

- A. Collect Data Required For Keystone example
 - Reservoir operations manual with rules of operation
 - Reservoir elevation-storage curve digitized
 - Induced surcharge curve digitized
 - Spillway rating curve partial and full gate open digitized
 - Historical data time series for ICP runs
 - Inflow time series
 - Outflow time series
 - Local inflow to downstream control points
- B. Format time series data into card time series

Implementation Step 3: Select Model

- A. Review 1C (Map Outline of Operations to NWSRFS Models)
- B. Determine if you can get the data you need operationally

Implementation Step 4: Code the parameters in MCP3

- A. Define Schemes/Methods
- B. Define RCL/RULES
- C. Define input/output time series
- D. Define displays
 - Plot inflow, simulated outflow, observed outflow
 - Plot pool elevation
 - Use PLOT-TS to view multiple data types concurrently

Implementation Step 5: Run implementation in MCP3

- A. Determine when largest errors are occurring
- B. Determine which operations should be governing this period
- C. Determine if governing operations are coded correctly